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Successful development of the NASP demands a propulsion system
which operates efficiently across the entire NASP operational flight envelope and at
speeds ranging from the takeoff to near-orbital velocity. To meet this challenge,
research is being conducted to -develop specific air-breathing engine designs which’
exhibit high effective specific impulse using combined subsonic-supersonic-
combustion ramjet/scramjet propulsion concepts. Scramjet engine performance
critically depends upon effective, synergistic integration of new propulsion
technologies with the basic NASP airframe (see Figure 8-1).
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Figure 8-1. The Propulsion Challenge

The performance goals of the NASP program require an aero-propulsion
svstem with a high effective specific impulse. In order to achieve these goals, the
high potential performance of air-breathing engines must be achieved over a very
wide Mach number operating range. This, in turn, demands high component
performance and involves many important technical issues which must be
resolved.
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Scramjet Propulsion Technology is divided into five major areas: (1)
inlets, (2) combustors, (3) nozzles, (4) component integration, and (5) test facilities.
Critical areas of focus for the component areas (inlets, combustors, and nozzles) are
the resolution of key technical issues, development of a high Mach number design
methodology, and establishment of a high Mach number performance data base that
will meet the challenging goals of the high performance and minimum weight
engine required for NASP. In component integration, integrated models of selected
component designs must be tested in order to resolve component integration
problems and to evaluate overall engine performance. Test facilities are required
(1) to provide Mach 5-8 test capabilities of sufficient scale in order to conduct and
support the engine contractors' propulsion module tests and (2) to provide very
high Mach number simulations for smaller scale component tests.

) The scramjet inlet technology area addresses the key issues of inlet
contraction ratio, inlet efficiency and air capture, boundary-layer effects and
simulation, shock/boundary-layer interactions, and real-gas effects. The waves in
the internal portion of a hypersonic inlet tend to coalesce into a strong shock giving
rise to a large adverse pressure gradient. Increasing the contraction ratio aggravates
the problem, thereby finally limiting the allowable compression ratio before
massive separation occurs. Relatively long forebodies are required to minimize
shock losses at high Mach numbers. Consequently, the boundary layer tends to
become relatively thick. The airframe shape and type of profile can have a
significant impact on inlet performance and its operating characteristics. Also, at
very high Mach numbers, the effect of O, vibration can become important. Wave
structure of any given geometry is unique, and important inlet characteristics, such
as air capture, are difficult to match unless properly simulated. Combined analytical
and experimental efforts will provide answers to these issues, as well as develop the
methodology to design, test, analyze, and evaluate high performance hypersonic
inlets. Tests of small aerodynamic models will be conducted over a wide Mach
number range, including both wind tunnels and shock tunnels, and will be
complemented with applied computational fluid dynamics.

. Hypersonic vehicles tend to utilize their long forebodies as part of the inlet
compression process. This results in forebody boundary layers being ingested into
the propulsion system. In most cases, the complete forebody-inlet system is difficult
to model in a propulsion system test. Therefore, a technique to generate thick
boundary layers in supersonic flow must be developed with the proper momentum
defect distribution.
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Studies in the scramjet mixing area address the key issues of penetration,
wall and strut injection, supersonic shear layer mixing, and mixing augmentation
techniques. Experimental programs are underway to investigate shear layer mixing
and hypermixing concepts and to compare these results with CFD codes using
modified turbulence models. Several mixing augmentation techniques, including
longitudinal vorticity production and shock interactions, will be investigated
through university grants using the NASA Langley Mach 6 high Reynolds number
tunnel.

Shear flow development and mixing characteristics of noncircular nozzles
were investigated and compared to a circular jet over a range of Mach numbers at
the Naval Weapons Center (NWC), China Lake, California. Hot wire
measurements and schlieren photography were obtained. The superior mixing
characteristics of elliptic and rectangular jets relative to the circular jet, which were
known to exist for subsonic jets, were also found in the transonic jet and were
further augmented by the shock structures of the supersonic under-expanded jet.

Areas to be investigated in hypersonic mixing are effects of incoming
boundary-layer turbulence, longitudinal vorticity production, surface distortion, and
shock enhancement. :

The scramjet combustor technology study area addresses the key issues of
film cooling/skin friction, ignition enhancement/flameholding, combustor
performance, diagnostics, and effects of initial conditions. At high flight Mach
numbers, protection of the combustor wall is of paramount importance due to the
extremely high enthalpies of the incoming flow. Likewise, momentum of the fuel
is a major factor, and coaxial injection is required for most fuel to maximize thrust.
Film cooling offers the possibility of simultaneously protecting the wall from
excessive heat flux and reducing wall shear. However, coaxial injection is not
conducive to rapid mixing. Measurements are not only more difficult to make, but
they must be more extensive than in a subsonic combustor since in supersonic
combustion there is no defined sonic point and exit property profiles are generally
nonuniform. Therefore, the entire combustor exit flow field must be measured to
accurately assess combustor performance and to provide initial conditions for
nozzle flow analysis. Combined analytical and experimental efforts, supplemented
by university grants, will clarify these key issues and provide sufficient
understanding to design a supersonic combustor capable of operating over a wide
Mach number range. New instrumentation techniques and laser diagnostics will
provide detailed flow-field measurements with which to calibrate computational
codes.
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_ The scramjet kinetics study area addresses the issues of chemical kinetics,
reaction rate constants, and enhancement techniques for the three-body
recombination reaction. A chemical kinetic data base is being acquired for reliable
computer simulation of hydrogen/air supersonic combustion and for tests
performed in facilities using vitiated air. A shock tube and high temperature
kinetics cell, along with computational chemistry methods, are being utilized to
obtain the critical rate constants at required accuracy over a wide range of
temperatures. Identification of chemical additives that can speed up the exothermic
combining of radical species and experimental evaluation of their effectiveness will
be accomplished.

A sensitivity analysis of the hydrogen and air chemical reaction model
was performed by Los Alamos National Laboratory to identify which specific
reactions are the key rate-limiting steps in the heat release mechanism under
conditions relevant to scramjet propulsion.

The scramjet nozzle technology area addresses the. key issues of
nonequilibrium thermochemical effects, fluid dynamic losses, thrust vector control,
and entrance profile effects. A major thrust loss mechanism in supersonic nozzles
at high Mach numbers is the thermochemical energy retained by dissociated species
when subjected to a rapid expansion process. Other mechanisms which lead to large
losses include wall skin friction and heat transfer, divergence, and internal
compression waves generated by nonuniform entrance conditions. Combined
analytical and experimental efforts will provide answers to these issues and
demonstrate internal nozzle performance, as well as develop a data base for flight
Mach numbers over a wide range of Mach numbers using both steady state and-
pulse facilities.

The scramjet component integration technology area addresses the key
issues of combustor/inlet interaction, forebody effects on performance, and
combustor flow profile/nozzle performance. Flow profiles (including the nature of
the boundary layer) coming from one component will affect the performance of
subsequent components. For airframe-integrated scramjets, it is especially
important to investigate the effects of a simylated forebody flow on the performance
of the engine module. Combined analytical and experimental efforts will help
answer these issues, as well as develop 4 broad scramjet data base over a wide Mach
number range. Both vitiated and arc-heated freejet NASA Langley scramjet
facilities and the Calspan 96-inch shock tunnel will be utilized in establishing early

scramjet engine performance levels and resolve any key integration issues.
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NASP X-30 Propulsion Technology Status (Industry)
D. Kenison
NASP JPO
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